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Advancing fusion by leveraging AI and ML
2
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AI 

& ML

Scientific 
discovery

Boosted 
diagnostics

Data-
enhanced 
prediction

Real-time 
control

Model 
reduction

▪ Reduced  & 
Surrogate 
models

▪ Disruptions, 
transient 
events

▪ Assisting experimental 
design, large dataset 
exploration

▪ Information 
extraction,  
data fusion

▪ Plasma state 
monitoring & 
control
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Data in fusion: a challenge in itself
3
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▪Massive amount 
of data (Big data –
2PB/day at ITER, 
high bandwidth 
diagnostics)

▪ High-dimensional and 
heterogenous data 
(many diagnostics 
measuring various 
plasma properties)

▪Well-curated and annotated 
datasets: do we have a well-
defined vocabulary? 

▪ Clear formulation of the 
problem, and well-defined 
targets? Not always easy to 
translate high-level fusion 
research objectives in a well-
defined machine learning 
formulation…
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Typical Machine Learning workflow
4
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▪ Massive volume of data

▪ High-dimensional;

▪ Heterogenous

▪ multiple timescales 
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…Type of learning: Supervised Learning

Training data

𝒟: 𝒙1, 𝑦1 , 𝒙2, 𝑦2 , … , 𝒙𝑁, 𝑦𝑁

Batch Learning: 

• training on a dataset entirely

available to the learning algorithm, 

with model's parameters being 

updated after each iteration through 

the data.

• Typically, more computationally 

efficient, but less flexible to adapt 

to new data distributions.

Active learning:
• the learning algorithm is able to interactively 

query an information source to obtain the 

desired outputs on new data points (most 

informative data points to learn from)

• often used when there is a limited amount 

of labelled data available: selecting which 

data points to learn from, the model can 

learn more effectively and efficiently.

Online Learning:
• the algorithm receives one example at a 

time, with model’s parameters being updated 

incrementally as new data comes in. 

• Useful in case of limitations on computing 

and storage
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…Type of learning:  Reinforcement Learning

𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑟𝑒𝑤𝑎𝑟𝑑/𝑝𝑒𝑛𝑎𝑙𝑡𝑦

• Training data consists of sequences of states, actions, and rewards.

• Learning by trial-and-error, where the agent takes actions, receives rewards, 

and updates its policy based on the observed rewards until convergence to an 

optimal solution

Reinforcement learning:

• an “agent” learns to make decisions by 

continuously interacting with an environment and 

receiving feedback in the form of rewards or 

penalties. 

• The goal of reinforcement learning is to learn a 

“policy”, which is a mapping from states to 

actions, that maximizes the cumulative reward the 

agent receives over time.

Training data
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…Type of learning:  Unsupervised Learning

𝒙1, … , 𝒙2, … , … , 𝒙𝑁, …

Unsupervised Learning:

• useful to discover patterns or structure in the 

data, with no labelled data. The learning algorithm 

task is to identify structure in the data, such as 

grouping similar examples according to a well-

defined metric.

• Some common unsupervised learning techniques:

• Clustering: grouping of similar examples into 

clusters, 

• dimensionality reduction: projection of the 

data into a lower-dimensional space while 

preserving as much of the structure of the data 

as possible

• anomaly detection: identification of examples 

that are significantly different from the majority 

of the data (…novelty detection).

Training data
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Loss function

ML foundations: fitting/training a model

Model fitting, or training:

• Learn the unknown target function describing the relation  

• find the set of parameters 𝜽 that best describe the mapping between the input and 

output variables in the data.

• Given the input data 𝒟, solve an optimization problem in terms of minimization of an

objective or loss function  

• What we call inference depends on the context: quantify the uncertainty or confidence 

in the estimate ෡𝜽, or making prediction with a training model;

• More in general: process of drawing conclusions about the underlying data-

generating process

𝑓(𝑥, 𝜽) → 𝑦

Training examples

𝒟: 𝒙1, 𝒙2, … , 𝒙𝑁
෡𝜽 = argmin

𝜽
𝓛 (D|𝜽)

8

C
o
n
tr

o
l 
a
n
d
 O

p
e
ra

ti
o
n
 o

f 
T

o
k
a
m

a
k
s
  
  

 A
.P

a
u

8

(Training) data 𝒟: 𝒙1, 𝑦1 , 𝒙2, 𝑦2 , … , 𝒙𝑁, 𝑦𝑁



ML foundations: fitting/training a Perceptron

output

Inputs

weights

bias term

Net input

Activation 

function

1. Initialize 𝒘, 𝒃. (𝑤𝑖𝑡ℎ 𝑥[0] = 𝟏 𝑓𝑜𝑟 𝒃 )

2. for every training epoch:

1. for every 𝑥[𝑗], 𝑦[𝑗] in 𝒟:            (or over mini-batches)

1. ො𝑦[𝑗] =  𝒘𝑇𝒙[𝑗] + 𝑏 compute prediction (forward) 

2. 𝑒𝑟𝑟 = 𝑦[𝑗] − ො𝑦[𝑗] compute error (backward)

3. 𝒘, 𝒃 = 𝒘, 𝒃 + 𝑒𝑟𝑟 ∙ 𝒙 𝒋 update parameters

On-line mode with Gradient Descent

ො𝑦 =  ෍

𝑖=1

𝑚

𝑤𝑖 ∙ 𝑥𝑖 + 𝑏 =  𝒙𝑇𝒘 + 𝑏

𝒟: 𝒙[1], 𝑦[1] , 𝒙[2], 𝑦[2] , … , 𝒙[𝑁], 𝑦[𝑁] ∈ 𝑚

Given a training set:
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ML foundations: gradient descent
10
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Convex loss function

𝓛(𝒘, 𝑏) = ෍

𝑗

෢𝑦[𝑗] − 𝑦[𝑗]
2

ො𝑦 =  ෍

𝑖=1

𝑚

𝑤𝑖 ∙ 𝑥𝑖 + 𝑏 =  𝒙𝑇𝒘 + 𝑏

𝒟: 𝒙[1], 𝑦[1] , 𝒙[2], 𝑦[2] , … , 𝒙[𝑁], 𝑦[𝑁] ∈ 𝑚

10

output

Inputs

weights

bias term

Net input

Activation 

function

x0 = 1

w0 = b



ML foundations: learning « modes »

On-line mode: 
• Learning faster but noisier (shuffling each 

epoch) – update after each 𝑥[𝑗], 𝑦[𝑗]

Batch mode: 
• Slower but less sensitive to noise
• update after the entire data “batch”

Mini-batch mode (typically used in DL)

• In between the previous two: with respect to 

batch settings, the update is done for each 

“mini-batches”.

• Advantage: vectorization (GPUs)

• Less noisy than online-mode & learning faster 

than batch

Other training paradigm:
• Stochastic Gradient Descend (SGD)

• Batch Normalization (BN)

𝓛(𝒘, 𝑏) = ෍

𝑗

෢𝑦[𝑗] − 𝑦[𝑗]
2
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ො𝑦 =  ෍

𝑖=1

𝑚

𝑤𝑖 ∙ 𝑥𝑖 + 𝑏 =  𝒙𝑇𝒘 + 𝑏

𝒟: 𝒙[1], 𝑦[1] , 𝒙[2], 𝑦[2] , … , 𝒙[𝑁], 𝑦[𝑁] ∈ 𝑚
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Optimization problems with Least-Squares

ො𝑦 =  𝒙𝑇𝒘 + 𝑏 ;  = 𝐼;

• We have to fit basically a linear regression model

• Reasons: Sometimes closed-form solution (matrix inversion) computationally expensive 
(large 𝒟)

• We can learn this parameters iteratively, fitting (deep) neural networks and (non-
)convex loss functions
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ො𝑦 = 𝑿𝒘

𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝑦

𝓛(𝒘) =
1

2𝑚
෍

𝑗

ො𝑦[𝑗] − 𝑦[𝑗] 2

∇𝓛(𝒘) =
1

2𝑚
𝑿𝒘 − 𝒚 2 = (𝑿𝒘 − 𝒚)𝑇(𝑿𝒘 − 𝒚)

=
1

2𝑚
2𝑿𝑇(𝑿𝒘 − 𝒚) (using chain rules)

∇𝓛 𝒘 = 0 → 𝑿𝑇(𝑿𝒘 − 𝒚)=0 →

normal equation: 𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝑦

output

Inputs

weights

bias term

Net input

Activation 
function

x0 = 1

w0 = b

matrix form



output

Inputs

weights

bias term

Net input

Activation 

function

ො𝑦 =  ෍

𝑖=1

𝑚

𝑤𝑖 ∙ 𝑥𝑖 + 𝑏 =  𝒙𝑇𝒘 + 𝑏

𝒟: 𝒙[1], 𝑦[1] , 𝒙[2], 𝑦[2] , … , 𝒙[𝑁], 𝑦[𝑁] ∈ 𝑚

Given a training set:
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𝓛(𝒘, 𝑏) = ෍

𝑗

ො𝑦[𝑗] − 𝑦[𝑗] 2

Convex loss function

13

1. Initialize 𝒘, 𝒃
2. for every training epoch:

1. for every 𝑥[𝑗], 𝑦[𝑗] in 𝒟:         (or over mini-batches)

1. ො𝑦[𝑗] =  𝒘𝑇𝒙[𝑗] + 𝑏 compute prediction 

2. ∇𝒘,𝒃𝓛 = 𝑦[𝑗] − ො𝑦[𝑗] ∙ 𝒙[𝑗] calculate error

3. 𝒘, 𝒃 = 𝒘, 𝒃 + 𝛼 ∙ −∇𝒘,𝒃𝓛 . update parameters

On-line mode with (Stochastic) Gradient Descent)

learning rate

ML foundations: Linear Regression (Least-squares)



ML foundations: fitting/ Gradient Descent (GD)

Convex Loss function 

(with a global minimum)

adaptive learning rate 𝛼

too small learning rate 𝛼

too large learning rate 𝛼

𝓛(𝒘, 𝑏) = ෍

𝑗

ො𝑦[𝑗] − 𝑦[𝑗] 2
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Convex Loss function

(MSE)

ML foundations: Linear Regression (Least-squares)

ො𝑦 =  𝒘𝑇𝒙 + 𝑏

𝓛(𝒘, 𝑏) =
1

2𝑁
෍

𝑗

෢𝑦[𝑗] − 𝑦[𝑗]
2

(prediction)

Back-propagation (Jacobians)

1.
𝜕𝓛

𝜕𝑤𝑖
=

𝜕
1

2𝑁
σ𝑗

෢𝑦[𝑗]−𝑦[𝑗]
2

𝜕𝑤𝑖

2.
𝜕𝓛

𝜕𝑤𝑖
=

𝜕
1

𝑛
σ𝑗

1

2
∙  𝒘𝑇𝑥[𝑗] −𝑦[𝑗]

2

𝜕𝑤𝑖

3.
𝜕𝓛

𝜕𝑤𝑖
=

1

𝑛
σ𝑗((ℎ) − 𝑦[𝑗]) ∙

𝑑
𝑑ℎ

∙
𝜕(𝒘𝑇𝑥[𝑗])

𝜕𝑤𝑖

4.
𝜕𝓛

𝜕𝑤𝑖
=

1

𝑛
σ𝑗((𝒘𝑇𝑥[𝑗]) − 𝑦[𝑗]) ∙ 𝑥𝑖

[𝑗]

On-line mode with Stochastic Gradient Descent

(chain rule for 𝑓  ℎ(𝒘)
𝜕𝑓  𝒉(𝒘)

𝜕𝑤𝑖
=

𝜕𝑓

𝜕
∙

𝜕
𝜕ℎ

∙
𝜕ℎ

𝜕𝑤𝑖

𝑤ℎ𝑒𝑟𝑒 ൞
𝑓 = ( − 𝑦𝑖)2

 = 𝐼(ℎ)

ℎ = 𝒘𝑇𝑥[𝑗]
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Outer → Inner



Underfitting and Overfitting: bias/variance trade-off 16
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OverfittingUnderfitting

E
rr

o
r

Model capacity or complexity

Test error
generalization

Training error 
Optimal point

High bias
Low variance

Low bias
High variance

E
rr

o
r

Model capacity or complexity

Test error 

Training error 

Under-parameterized 
regime

Over-parameterized
regime

Interpolation threshold

Double Descend

16



Underfitting and Overfitting: bias/variance intuition

TARGET Y VARIANCE

BIAS𝐵𝑖𝑎𝑠 ෡𝜽 = 𝐸 ෡𝜽 − 𝜽

𝑉𝑎𝑟 ෡𝜽 = 𝐸 (𝐸 ෡𝜽 − ෡𝜽)2

difference between the average estimator from 

different training samples and the true value.

estimate of how much the estimate varies as 

we vary the training data (e.g., by resampling).

noise

17
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Relational Inductive Biases

• RNN:  recurrent relation at each time step to process a 

sequence (sequentiality)

• Back propagation through time

• CNN:  convolution filters (spatial/time 

locality & equivariance)

• Multilayer NN:  feedforward (shuffling & 

independence)
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Inductive Bias: set of assumptions a learning algorithm uses to generalize from the training 

data to unseen examples.



Relational Inductive Biases

19

• Multilayer NN:  feedforward 

(shuffling & independence)

• Neural Networks with many layers (deep architectures) 

• learn representations of data through a process of model abstraction, 

automatically discovering the representations needed for detection or 

classification

• it replaces feature learning or feature engineering

• Originally hard to train ( but now we have GPUs) & less interpretable

• Deep Learning

• Transformers

hidden layers

• Transformers

19



ML foundations: Linear Regression (Least-squares)
20
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Iplasma

[A]

time [s]

EAST  

LCFS

target

prediction

▪ magnetic equilibrium reconstruction:

• complex time-varying, non-linear, multi-scale…

• Modeling sequences with large variations in 
the time scales… “attention is all you need”!

• …one-step ahead prediction of the magnetic 
field evolution in time (Last Closed Flux 
Surface)

REF:[ C. Wan, A. Pau, O Sauter et al  2022 (in review)]

1D SWIN 

Transformer

20



Machine Learning for plasma control
21
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SVD, PCA and MHD 

modes detection

21



▪ Data fusion techniques 
enhance insights from multiple 
sensors.

▪ Machine learning aids in 
identifying significant patterns, 
extracting temporal and spatial 
correlations.

▪ Interpret dominant patterns to 
extract physics knowledge

▪ Real-time analysis improves 
control strategies.

Extracting Physics from Sensor Data
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Singular Value Decomposition (SVD)
23
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▪

▪ Rows (n): each row represents a measurement at a specific time;

▪ Columns (m): each column corresponds to one sensor placed in a spatial 
array (e.g., magnetic probes ) 

23



Singular Value Decomposition (SVD)
24
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Singular Value Decomposition (SVD)
25
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❑ Temporal modes:

left singular vectors (U) 

capturing the temporal

evolution of the sensor

signals

❑ Spatial modes:

rigth singular vectors (V) 

revealing patterns and 

correlations across the 

sensors (e.g., coherent 

magnetic fluctuations).

❑ Singular values:

non-negative values (Σ) 

arranged in a descending 

order, corresponding to the 

energy or importance of each 

mode

25



Singular Value Decomposition (SVD)
26
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❑ Singular values energy ranking: dominant spatio-temporal modes together with their relative 

importance allowing for low-rank approximations (useful for noise reduction and dimensionality 

reduction).

26



Singular Value Decomposition (SVD)
27
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>> X = randn(100, 7); % Create a random data matrix

>> [U,S,V] = svd(X);  % full SVD

>> [U,S,V] = svd(X, ’econ’);

>>> import numpy as np 

>>> X = np.random.rand(100, 7)  # create random data matrix

>>> U, S, V = np.linalg.svd(X,full_matrices=True) # full SVD 

>>> Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False) # economy SVD

27



❑ eigenvalue decomposition of the correlation matrix

❑ Each non-singular singular value is the positive square root of an eigenvalue of the 

correlation matrix

28
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❑ Compute sensor correlation matrix:

❑ Substitute the SVD of       : 

28

Singular Value Decomposition – correlation matrix



▪ Replacing the matrix 𝐗 with them mean subtracted matrix (row-
wise subtraction) 

▪ From the covariance matrix              we get directly the principal 
“directions” by performing an eigen‐decomposition of the matrix 
itself: 

▪ The eigenvectors (columns of 𝐕) indicate the directions of 
maximum variance, and the eigenvalues represent the variance
explained by each principal component.

▪ The principal component scores are the projections of the data 
onto the principal directions. 

Link with Principal Component Analysis (PCA)
29
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𝐗 − ഥ𝐗 → 𝐗

𝐒𝐜𝐨𝐫𝐞𝐬: 𝐗𝐕 = 𝐔Σ
(principal components in the observation space) 

29

PC1

PC2



Least square and regression with SVD
30
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a = 
𝑥𝑇𝑦

𝑥𝑇𝑥
=

𝑥𝑇𝑦

𝑥 2

[y] = [x]a = UΣVTa

a = VΣ⁻¹UT y

[x] = UΣVT

Σ = ||x||

V = 1

U = x/||x||

❑ We want to find the slope 'a' that best fits y = ax

❑ "Best fit" here means minimizing the sum of 

squared errors → minimize ||y - xa||²

❑ Taking the derivative and setting it to zero gives 

us the normal equations: x'xa = x'y

❑ Unit vector in the direction x

❑ Unit vector

❑ Length of x

30
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Singular values:

❑ allows decoupling Spatial and Temporal patterns:

❑ Physical Interpretation

❑ singular values → energy and coherency of the MHD perturbation

❑ dominant spatial mode(s) → dominant patterns across sensors, indicating a large-

scale magnetic perturbation;

❑ dominant temporal mode(s) → time evolution of the perturbation (e.g., oscillations, 

rotations).
31

MHD perturbations in fusion plasmas TCV



MHD modes with SVD analysis
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❑ Coil measurement:

❑ Matrix measurements:

Amplitude

Coils

phase 

offsetRotation 

frequency

Phase shift (coil 

position, mode 

periodicity)

• rows = time indices

• columns = sensor positions 32



MHD modes with SVD analysis
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❑ Coil measurement:

❑ Matrix measurements:

Amplitude

Coils

phase 

offsetRotation 

frequency

Phase shift (coil 

position, mode 

periodicity)

f = 5; % Sin freq. (Hz)
A = 1; % Ampl

• 1 dominant mode 

(perturbation)

• Q: How should the 

singular values like?

❑ Perform SVD :

33



MHD modes with SVD analysis
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❑ Perform SVD :

❑ Mode number (periodicity) applying fft to V(:,1)

❑ Mode Frequency applying fft to U(:,1)

pc1 + i * pc2; 

Complex Spatial Mode

Phase 

unwrap

Phase 

polar

34



MHD modes with SVD analysis
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F
re

q
 [
k
H

z
]

❑ Toroidal mode with “Odd” periodicity 

❑ Toroidal and poloidal arrangement of 
the magnetic probes on TCV
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MHD modes with SVD analysis
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F
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q
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❑ Toroidal mode with “Odd” periodicity 
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MHD modes with SVD analysis
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F
re

q
 [
k
H

z
]

❑ Toroidal mode with “Odd” periodicity 

(m,n)=2,1

(m,n)=3,2

(m,n)=3,1

n=1 n=2 n=3n=0
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MHD- RT observers with Neural Networks

REF: L. Harrison, J.P. Svantner,  A. PauToroidal 

array: 

16 probes 

n=1RMS reconstruction from 

raw magnetic 

measurements 

0          0.02      0.04      0.06       0.08       0.1

time[s]

0.8

0.6 

0.4 

0.2

0.0

[mT]

A
m

p
lit

u
d
e

n=1

n=2

# hidden layers & # neurons 
hyper-parameters
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Machine Learning for plasma control
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A probabilistic 

perspective
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Bayesian inference

Posterior
Likelihood Prior

Evidence or Marginal
𝑃 𝜽 𝒟 =

𝑃 𝒟 𝜽 ∙ 𝑃(𝜽)

𝑃(𝒟)

• Bayes' Theorem that describes how to update the probability of an event (or hypothesis) 
based on new evidence or information.

• What do we mean with Bayesian Inference?

𝜽 is an unknown 

random variable

=
𝑃 𝒟 𝜽 ∙ 𝑃(𝜽)

׬ 𝑃 𝒟, 𝜽′ 𝑝 𝜽′ 𝑑𝜽′

𝒟: 𝒙[1], 𝑦[1] , 𝒙[2], 𝑦[2] , … , 𝒙[𝑁], 𝑦[𝑁]

Given a dataset:

• The posterior gives an indication of the uncertainty
about our fitting parameter 𝜽 given the data 𝓓, 
according to the prior knowledge we have.

• Extremely powerful for online learning:

• 𝑃 𝜽 𝒟1:𝑡 ∝ 𝑃 𝒟1:𝑡 𝜽 ∙ 𝑃 𝜽 𝒟1:𝑡−1
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Behind Kalman filters: Bayesian inference
41
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Process disturbance

Measurement noise

Predicted state 
estimate

Measurements

A priori estimate

41

Stochastic state observer



Behind Kalman filters: Bayesian inference
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Process disturbance

Measurement noise

Predicted state 
estimate

Measurements

Optimtal state 
estimate

A priori estimate

42



Process disturbance

Measurement noise

Behind Kalman filters: Bayesian inference
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Measurements 1

Measurements 2
Predicted state 
estimate

A priori estimate
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Process disturbance

Measurement noise

Behind Kalman filters: Bayesian inference
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Measurements 2
Predicted state 
estimate

Measurements 1

Optimtal state 
estimate

A priori estimate
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Behind Kalman filters: Bayesian inference
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Bayesian inference: event-detection problem

𝑃 𝜽 𝒟 =
𝑃 𝒟 𝜽 ∙ 𝑃(𝜽)

𝑃(𝒟)

• We have a RT-detector for Locked Modes 
(LM - common disruption precursor:

• The detector works very well:
• It has an accuracy of 99% (correct 

detection when there actually is a LM)

• It has a very low false positive rate 0.1%

• In our sampling distribution 2% of the 
discharges exhibits a Locked Mode

46
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detection

• Consider the case where we run a discharge, and the locked mode 
detector triggers an alarm.

• What is the probability that there was a locked 
mode?

46



Bayesian inference: event-detection problem
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• What is the probability that there was 
actually a locked mode?

• We have a RT-detector for Locked Modes 
(LM - common disruption precursor:

• The detector works very well:
• It has an accuracy of 99% (correct 

detection when there actually is a LM)

• It has a very low false positive rate 0.1%

• In our sampling distribution 2% of the 
discharges exhibits a Locked Mode

𝑃 𝐿𝑀 𝑑𝑒𝑡𝑒𝑐𝑡 =
𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 𝐿𝑀 ∙ 𝑃(𝐿𝑀)

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡)

0.99 0.02

?%

47
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Bayesian inference: event-detection problem
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𝑃 𝐿𝑀 𝑑𝑒𝑡𝑒𝑐𝑡 =
𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 𝐿𝑀 ∙ 𝑃(𝐿𝑀)

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡)

• What is the probability that there was 
actually a locked mode?

• We have a RT-detector for Locked Modes
(LM - common disruption precursor:

• The detector works very well:
• It has an accuracy of 99% (correct

detection when there actually is a LM)

• It has a very low false positive rate 0.1%

• In our sampling distribution 2% of the 
discharges exhibits a Locked Mode

0.99 0.02

?%

𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 = 𝑃(𝑑𝑒𝑡𝑒𝑐𝑡│𝐿𝑀) ∙ 𝑃 𝐿𝑀 + 𝑃(𝑑𝑒𝑡𝑒𝑐𝑡│~𝐿𝑀) ∙ 𝑃 ~𝐿𝑀

48
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Bayesian inference: event-detection problem
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𝑃 𝐿𝑀 𝑑𝑒𝑡𝑒𝑐𝑡 =
𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 𝐿𝑀 ∙ 𝑃(𝐿𝑀)

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡)

• What is the probability that there was 
actually a locked mode?

• We have a RT-detector for Locked Modes
(LM - common disruption precursor:

• The detector works very well:
• It has an accuracy of 99% (correct

detection when there actually is a LM)

• It has a very low false positive rate 0.1%

• In our sampling distribution 2% of the 
discharges exhibits a Locked Mode

0.99 0.02

?%

𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 = 𝑃(𝑑𝑒𝑡𝑒𝑐𝑡│𝐿𝑀) ∙ 𝑃 𝐿𝑀 + 𝑃(𝑑𝑒𝑡𝑒𝑐𝑡│~𝐿𝑀) ∙ 𝑃 ~𝐿𝑀

0.99 0.02 1-0.020.001

𝑃 𝐿𝑀 𝑑𝑒𝑡𝑒𝑐𝑡 =
𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 𝐿𝑀 ∙ 𝑃(𝐿𝑀)

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡)
= ~𝟎. 𝟗𝟓𝟑

0.99 0.02

0.020895%
49
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Control oriented Machine Learning applications 50
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Plasma trajectories & 

Latent variable models  
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Latent variable models for plasma state monitoring

51
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Plasma trajectories in physics phase spaces

52
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H-mode 
degradation 

• Increasing gas flux

• Pedestal degradation

L-H back 
transition

• Density limit in H-mode: HL

• Enhanced edge turbulent 
transport and collisionality 

Edge  
Cooling

• Edge pressure collapse

• MARFE X-point > HFS > TOPMARFE onset

• Ip channel contraction

• Global cooling of the edge

MHD

• (2,1) mode growths & locks

• Vertical displacement (TCV)

DISRUPTION

▪ High-performance Density Limit 
dynamics described through 
trajectories in a physics-based 
“state space” [H98y,2-ne-crit-norm] 

▪ Conflicting control objectives in 
high density regimes

▪ Proximity to boundaries with 
increasing probability of 
disruptions (H-L, MARFE, etc.)

ne

E

REF: [M. Bernert PPCF 2015]



▪ Sequence-based model: a variational autoencoder (transformer, GPT-alike 
architecture)

▪ Multi-task learning: by learning tasks jointly(supervised and unsupervised), 
the model can discover common features or structures across tasks (shared 
representation). 

REF: A. Buerli, A. Pau et al, ArXiV 2025

Latent variable models for plasma state monitoring

time2boundary regression

disruptivity classification

Input state 
reconstruction

Smooth latent 
trajectory movement

53
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Plasma State Monitoring with sequence-based DL
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REF: A. Buerli, A. Pau et al, ArXiV 2025

•The goal is to discover and learn the hidden/latent variables or states that better explain or predict observable 

signals, transitions, or anomalies in plasma behavior.
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Plasma State Monitoring with sequence-based DL
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REF: A. Buerli, A. Pau et al, ArXiV 2025
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•The goal is to discover and learn the hidden/latent variables or states that better explain or predict observable 

signals, transitions, or anomalies in plasma behavior.



Latent variable models for disruption monitoring
Sequential VAE with multimodal prior

x x

z

▪ Project disruptive boundaries & 
physics quantities to inspect 
connections

▪ Project full discharges to track proximity 
to disruption

▪ Future: Investigate identified modes in 
posterior distribution

▪ Future: Discretize projections as 
sequences of states TCV

56

[Poels et al. WIP]
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▪ Scientific machine learning for building simulators that combine physics + machine learning

▪ Reinforcement learning to design trajectories and controllers to meet operator specifications that 
are robust to physics uncertainty 

▪ Trajectory: sequence of states, actions, and rewards that an agent experiences as it 
interacts with the environment. 

▪ Neural State Space Models (NSSM) to learn the temporal dynamics of some observed 
quantities in response to actions (physics structure and data-driven models).

A. Wang, A. Pau, et al.  
(paper to be submitted)

Plasma trajectories optimization with physics constraints 

57

COLLABORATION WITH MIT
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Plasma trajectories optimization with physics constraints 

Reward function 

Reward function parameters 

58

COLLABORATION WITH MIT
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Exercises 59
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Introduction to the 

exercises
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Control augmentation in modern Plasma Control Systems 60

C
o
n
tr

o
l 
a
n
d
 O

p
e
ra

ti
o
n
 o

f 
T

o
k
a
m

a
k
s
  
  

 A
.P

a
u

EVENT DETECTION

▪ Magnetic control via DRL

▪ plasma state monitoring and 
forecasting for control 
augmentation

▪ Detection of off-normal events to 
react with specific control tasks in 
real-time

▪ Proximity to operational limits

REF: [F. Matos et al.  NF 2020] 
REF: [F. Matos et al. NF 2021]        
REF: [G. Marceca et al. NeurIPS 2021]   

Deep learning models
• Long term 

dependencies in 
confinement state 
temporal dynamics

…combination & integration of:

▪ Physics-, model- & ML-based 
approachesPlasma Control System

REF: [Pau et al IEEE-TPS 2018
REF: [Pau et al NF 2019]

REF: [FJ. Degrave, F. Felici et al.  Nature 2022]
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Event detection and plasma state classification
61
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▪ Plasma can evolve in one of several 
possible confinement states (typical 
categorization in L=Low; D=Dithering; 
H=High).

▪ By applying sufficient heating power, the 
plasma spontaneously transitions from a 
low to a high confinement state

▪ H-mode: improved energy confinement 
state with reduced particles and energy 
transport outwards formation of an edge 
transport barrier (ETB) and a cyclic MHD 
instability called Edge Localized Modes 
(ELMs).

▪ Plasma confinement states [L=Low; D=Dithering; H=High]

An experiments have potentially hundreds of events….

L D H

Time [s]

SXR core

ne

Dalpha emission

Plasma thermal energy

Sawtooth “crashes”

ELMs
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Backup slides
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ML foundations: a probabilistic perspective

• We call inference(*) the procedure with which we quantify of the uncertainty or 

confidence in the estimate ෡𝜽.

• On a probabilistic perspective we reason in terms of Probability Density Estimation 

for the joint probability distribution of our dataset 𝒟 (a sample from the population)

• Under i.i.d assumption (training examples sampled independently and identically

from the population representing the input domain 𝒟:

• Therefore the optimization problem can be seen as maximizing a probability

• inference(*) in the deep learning community refers to predicting      𝑝(𝑦𝑛|𝑥𝑛, ෡𝜽)

෡𝜽 = argmin
𝜽

𝓛 (𝒟|𝜽)

෡𝜽 = argmax
𝜽

𝑝 (𝒟|𝜽)

𝑝 𝒟 𝜽 = ෑ

𝑛=1

𝑁

𝑝(𝑦𝑛|𝑥𝑛, 𝜽) 𝐿𝐿 𝒟 𝜽 ≜ log 𝑝 𝒟 𝜽 = ෍

𝑛=1

𝑁

𝑝(𝑦𝑛|𝑥𝑛, 𝜽)
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ML foundations: a probabilistic perspective

• Therefore, the optimization problem translates in maximizing the Log-Likelihood (LL),

• Which can be also seen as minimizing the Negative Log-Likelihood (NNL):

• Estimating the probability density function (high uncertainty if the sampling distribution 

is small) is usually done with two common approaches:

• Maximum Likelihood Estimation (MLE)

• Maximum a Posteriori (MAP):

෡𝜽 = argm𝑖𝑛
𝜽

𝑁𝐿𝐿 𝒟 𝜽

𝐿𝐿 𝒟 𝜽 ≜ log 𝑝 𝒟 𝜽 = ෍

𝑛=1

𝑁

𝑝(𝑦𝑛|𝑥𝑛, 𝜽)

𝑁𝐿𝐿 𝒟 𝜽 ≜ −log 𝑝 𝒟 𝜽 = − ෍

𝑛=1

𝑁

𝑝(𝑦𝑛|𝑥𝑛, 𝜽)

෡𝜽 = argmax
𝜽

𝐿𝐿 (𝒟|𝜽)
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ML foundations: a probabilistic perspective
65

• Maximum Likelihood Estimation (MLE): frequentist approach for estimating the 

set of parameters ෡𝜽 of a model by finding the values that maximize the log-

likelihood 𝐿𝐿 𝒟 𝜽 . 

• Interpretation: 𝐿𝐿 𝒟 𝜽 describes the probability of observing the data given the 

model parameters ෡𝜽. The likelihood function is known if data are i.i.d.
෡𝜽 resulting from MLE are the most probable values given the data.

• Maximum a Posteriori (MAP): Bayesian approach for estimating the values of the 

parameters ෡𝜽 that maximize the posterior probability, 

• Interpretation: MAP describes probability of the parameters given the data and

allows incorporating prior knowledge about the parameters into the estimation 

process. This prior knowledge is specified as a probability distribution and allows us 

to account for uncertainty in the data.
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Event detection and plasma confinement state classification 66
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▪ Deep Learning model based on a 
convolutional-RNN (LSTM)

▪ Probability of the plasma of being in 
a given confinement state 
(accounting for temporal evolution)

▪ RT implementation (nice example of 
integration with physics-based 
models in the framework of off-
normal events handling & disruption 
avoidance 

REF: [Matos et al NF 2020]
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Event detection and plasma confinement state classification

▪ SEQUENCE 2 SEQUENCE MODEL:

• Model not constrained to have same 
source/target resolutions.

• Decoder was extended with an attention layer to 
capture larger context of long input sequences.

▪ UTIME MODEL:

• Multi-scale convolutional structure allows to capture 
patterns at different scales present in the plasma.

• processing the whole signal at once (offline) with the 
ability to see at a wider contextual information.
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REF: [Matos et al NF 2021]
REF: [Marceca et al NEURIPS 2021]
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