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=PFL Advancing fusion by leveraging Al and ML

® Assisting experimental
design, large dataset
discovery exploration

Scientific

® Reduced &

Surrogate Vodel " Information

models reduction Boosted extraction,

diagnostics .
data fusion

® Plasma state ® Disruptions,

H H . Data- H
monitoring & Rea|-t.rrl,e enhanced transient
control contro prediction events
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=L Data in fusion: a challenge in itself

® Massive amount

of data (Big data -
2PB/day at ITER,
high bandwidth

diagnostics) (/

" High-dimensional and
heterogenous data
(many diagnostics
measuring various
plasma properties)

= Clear formulation of the
problem, and well-defined
targets? Not always easy to
translate high-level fusion

® Well-curated and annotated research objectives in a well-
datasets: do we have a well- defined machine learning

defined vocabulary? formulation...
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EPFL Typical Machine Leaming workflow

® Massive volume of data

IMAGE PROCESSING

| REGRESSION |
| PROB. ESTIMATION |

TIME SERIES FORECASTING

" High-dimensional; (e aa e e s et e e e , -
’ ' REINFORCEMENT ' Q T
' '
________________ : LEARNING : AGENT ENVIRONMENT
DATA PREPARATION ' e T | S
] | MACHINE LEARNING MODEL 1 PLASMA CONTROL & SIMULATORS
DATA . : I
PROCESSING : | | UNSUPERVISED LEARNING ] DATA VISUALIZATION
| | - !
- | | [[_DATA/Dim-REDUCTION | |, PATTERN RECOGNITION
EATURE | I
EXTR%::TION ::>: CLUSTERING GENERATIVE MODELS
ENGINEERING ! '
I : @ ANOMALY DETECTION
1
————————————— 1 1
I Human | : | SyEERMIEREARNING EVENT/OBJECT DETECTION
1 1 1
e | ! ! CLASSIFICATION
L J 1 I
|
1
|
|

® Heterogenous

" multiple timescales
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=PrL

Training data

D: (xll Y1); (xz, }’2)» ey (xN' yN)

Batch Learning:

« training on a dataset entirely
available to the learning algorithm,
with model's parameters being
updated after each iteration through
the data.

« Typically, more computationally
efficient, but less flexible to adapt
to new data distributions.

Ml Swiss
Plasma
Center

...Type of leaming: Supervised Leaming

Active learning:

« the learning algorithm is able to interactively
guery an information source to obtain the
desired outputs on new data points (most
informative data points to learn from)

« often used when there is a limited amount
of labelled data available: selecting which
data points to learn from, the model can
learn more effectively and efficiently.

Online Learning:

« the algorithm receives one example at a
time, with model’s parameters being updated
incrementally as new data comes in.

« Useful in case of limitations on computing
and storage

Control and Operation of Tokamaks A.Pau o



PFL ...Type of leaming: Reinforcement Leaming

Reinforcement learning:
* an “agent” learns to make decisions by
continuously interacting with an environment and

o receiving feedback in the form of rewards or

(input, output, reward/penalty)| « The goal of reinforcement learning is to learn a
“policy”, which is a mapping from states to
actions, that maximizes the cumulative reward the
agent receives over time.

« Training data consists of sequences of states, actions, and rewards.

« Learning by trial-and-error, where the agent takes actions, receives rewards,
and updates its policy based on the observed rewards until convergence to an
optimal solution

Ml Swiss
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Center

Control and Operation of Tokamaks A.Pau &



=PFL__.Type of leaming: Unsupervised Leaming

Unsupervised Learning:

« useful to discover patterns or structure in the
data, with no labelled data. The learning algorithm

o task is to identify structure in the data, such as

Training data grouping similar examples according to a well-

defined metric.
(xg,...), (x5, .0), o, (Xpy, o) —

« Some common unsupervised learning techniques:

- - « Clustering: grouping of similar examples into

A £ *@«: " clusters,

. e £ . et « dimensionality_reduction: projection of the
oo A data into a lower-dimensional space while

5. ,,_"‘.,. < preserving as much of the structure of the data
.’(l'-:tb. B * ] as possible

e 5. & - anomaly detection: identification of examples

that are significantly different from the majority

W Swiss of the data (...novelty detection).

Plasma
Center
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=PFL ML foundations: fitting/training a model

Model fitting, or training: (Training) data D: (x1,v1), (x2,¥2), ..., (Xn, Vy)

« Learn the unknown target function describing the relation f(x,0) —y

« find the set of parameters 0 that best describe the mapping between the input and
output variables in the data.

» Given the input data D, solve an optimization problem in terms of minimization of an
objective or loss function

Training examples Loss function

—~

0 = argmin L (D|0)
0

D:xl,xz, ey XN

« What we call inference depends on the context: quantify the uncertainty or confidence
in the estimate 8, or making prediction with a training model;
W Swiss * More in general: process of drawing conclusions about the underlying data-

Plasma

Center generating process
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=L ML foundations: fitting/training a Perceptron

bias term m
y=('5 (ZWLxl>+b =G(xTW+b)

Activation =1

W1 function Given a training set:

O 9 D: (211, y[10), (121, y[21), ., (xIV],yINT) € gm

Net input
On-line mode with Gradient Descent

Wm
1. Initializew,b. (with x[°1 =1 forb)

weights 2. for every training epoch:
U1 U1 . ini-
Inputs 1. forevery (xUl,yUl)in D: (or over mini-batches)
1. Ul =o(wTxUl +b) compute prediction (forward)
2. err = (ylUl —pUl) compute error (backward)
Il Swiss

Plasma 3 w,b=w,b+err-xUl  update parameters

Center

APau @
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=PFL ML foundations: gradient descent

bias term X =1 m
Wy =D ~
Inputs y=0 Wit Xi

_ _ =1
Activation

(e )3 @—‘5’

output E 4

Net input
Wm

weights
function

L(w,b) = Z(ﬁ] _ y[j])z
7

) + b) =o(x"w + b)

WY function D: (x[l],y[l]), (x[z],y[Z]), (x[N],y[N]) € jRm

Ml Swiss
Plasma
Center
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=PFL ML foundations: learning « modes »

On-line mode:
« Learning faster but noisier (shuffling each R

epoch) — update after each (x[j],y[f]) y =
=1
Batch mode:
« Slower but less sensitive to noise D: (211, y[11), (212, y121), . (xIN], yINT) €

* update after the entire data “batch”

Mini-batch mode (typically used in DL)

* In between the previous two: with respect to
batch settings, the update is done for each
“mini-batches”.

« Advantage: vectorization (GPUSs)

* Less noisy than online-mode & learning faster
than batch

Other training paradigm:
| « Stochastic Gradient Descend (SGD)
" Blaoma « Batch Normalization (BN)

Center

o (ZW1X1>+b ZG(XTW+b)

L4 L(W’b)ZZ(ﬁ]_ym)z
7

[y
[y

Control and Operation of Tokamaks A.Pau
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=PrL

ML foundations: Linear Regression (Least-squares)

Optimization problems with Least-Squares  normal equation: w = (X7X)"1XTy

Inputs

) =1 R
R e y=ocx"w+b);, oc=I
matrix form 1 ,
Activation ~ . N .
W function y=Xw  Lw)= %Z(ym )
ﬁ VL(W) :L”XW—)’”Z=(XW—y)T(Xw—y)
output 2m

Net input . i T - : :
- = 2X"' (Xw — y) (using chain rules)

weights

VLw) =0 - XTXw—-y)=0 - w=X'X)"'X"y

* We have to fit basically a linear regression model

* Reasons: Sometimes closed-form solution (matrix inversion) computationally expensive
(large D)

* We can learn this parameters iteratively, fitting (deep) neural networks and (non-
)convex loss functions

=Y
N

Control and Operation of Tokamaks A.Pau
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=PFL ML foundations: Linear Regression (Least-squares)

bias term

Activation
WY function

Net input
Wm 1.

weights 2.
Inputs
Convex loss function
Lw,b) = Z(;,[j] — ylily?
" Dlsma 7

Center

1.

m
y=('5 (ZWLxl>+b =G(xTW+b)

1=1

Given atraining set:

D: (211, y111), (12, y12)), .., (21N, yIN]) € i

On-line mode with (Stochastic) Gradient Descent)

Initialize w, b
for every training epoch:
for every (xUl,yU1) in D: (or over mini-batches)
1. Ul =o(wlxUl + b) compute prediction

2. VL= (yUl —=9Ul).xUl  calculate error
3 w,b=w,b+Q@:- (—Vw’bL‘). update parameters

learning rate

=Y
w

A.Pau

Control and Operation of Tokamaks
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=PFL ML foundations: fitting/ Gradient Descent (GD)

adaptive learning rate «

/

EA

EA

//

too small learning rate «

EA

W1

Convex Loss function
(with a global minimum)

B Swiss L(W’ b) - Z(j;[]] o y[J])Z
J

Plasma
Center

w1

too large learning rate

v

a

Wi

\ 4

-
Y

Control and Operation of Tokamaks A.Pau
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=PFL ML foundations: Linear Regression (Least-squares)

Control and Operation of Tokamaks A.Pau

Back-propagation (Jacobians) On-line mode with Stochastic Gradient Descent
1 —_— -\ 2
o _ a(mzj(ym_ym) )
’ awi B awi
11 . 12
’ awi - aWi
(chain rule for f(c(h(w))) f=(@-y)?
\ Output layer af(G(hw))) _ af G oh where c= I(h).
Input layer ow; T 906 9h ow; h = wTxUl
Outer = Inner
Convex Loss function or . il dS 2wl
3. —===Y.(c(h) —yUhH.—.
| N& oL 1 [/]
. / = =Y. T Uy — v Uy .U
" Phaema 9 =c(wlx+b) (prediction) % ow; nZJ(G(W xU) —yVh) - x

Center
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=PrL

Underfitting and Overfitting: bias/variance trade-off

High bias
Low variance

Ml Swiss
Plasma
Center

Underfitting . Overfitting

Low bias
High variance

Test error
generalization

o I ~ . Training error
timal point . -

Model capacity or complexity

Double Descend

Under-parameterized /'
regime

Over-parameterized
regime

Test error

. m S
Training error- _ _

Model capacity or complexity

=
-]

A.Pau

Control and Operation of Tokamaks
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=PFL  Underfitting and Overfitting: bias/variance intuition "

Bias/variance decomposition of the squared error [derivation]
Err(x) = (Bias[f(x)])? + Var[f (x)] + 2

Irreducible error
How far the learned model Changes when the

is from the true function model is trained on
different data samples

noise
' 1 I+
I I
| |
I I
| |
Var[8] = E[(E[0] — 8)?] :
estimate of how much the estimate variesas VARIANCE TARGETY
we vary the training data (e.g., by resampling). 1 1
W Swiss BlaS[a] = E[a] —_ 0 1 BIAS 1
Plasma difference between the average estimator from

Cent . o
emer different training samples and the true value. 17



=PFL  Relational Inductive Biases

Inductive Bias: set of assumptions a learning algorithm uses to generalize from the training

data to unseen examples.

« Multilayer NN: feedforward (shuffling &

independence)
tput | Fully-
N Convolution corlme)c,ted
. i ayer
input layer layer 1 Convolution
hidden layer 1  hidden layer 2 36 layer 2
g S i 12 ‘ . s
oy 4. 2 e
. . . . Tkl Yt €T = fegooe
- cNN: convolution filters (spatial/time "ﬁz ---- - [ 12 4; A I@ @ -
locality & equivariance) : G 5 L A——
Y Max pooling bywa
3 layer 1
\put Layer
" - jw " * RNN: recurrent relation at each time step to process a
v ::> T'- v -_'-" -T sequence (sequentiality)
v o [ lu « Back propagation through time

Ml Swiss
® ® ® ®
Center

A.Pau

Control and Operation of Tokamaks
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=PFL  Relational Inductive Biases
Qutput

* Multilayer NN: feedforward Probabilities
(shuffling & independence) [ Softmax__]

* Transformers
output layer
input layer Feed
hidden layer 1 hidden layer 2 . Deep Learning Forward
| Add & Norm ﬁ
. "&‘i&.t‘fﬂl Mult-Head
v ee Attention
\\\"//'.\ Forward T 7 Nx
=\ S
X X —
\é‘@(” Add & Norm
';‘%. Nx | —(Add & Norm ) e
/‘\\ Multi-Head Mul?i?H?aad
£ ™ . output layer Attention Attention
input layer —*__) L_J_}
hidden layers - <N /
. ) Positional ® Positional
* Neural Networks with many layers (deep architectures) Encoding & Encoding
* learnrepresentations of data through a process of model abstraction, . ';g;; E%“*Sg-*
automatically discovering the representations needed for detection or = T - = e' =
classification nout Output
. . . . nputs utputs
« itreplaces feature learning or feature engineering (shifted right)

m swiss ° Originally hard to train ( but now we have GPUs) & less interpretable

Plasma
Center
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=PFL ML foundations: Linear Regression (Least-squares)

" magnetic equilibrium reconstruction:
* complex time-varying, non-linear, multi-scale...

* Modeling sequences with large variations in
the time scales... “attention is all you need”!

* ..one-step ahead prediction of the magnetic
field evolution in time (Last Closed Flux
Surface)

SWTB
Transformer
Block

SWTB
Transformer
Block

Sequence

Linear Embedding
Linear Embedding

Relative position

I
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Z[m]

EAST shot: 84330, time: 0.49

LCFS
— target

prediction

Transformer ; N/ S
I
4 21
o =] o : |
= SWTB E: SWTB E | plasma
Sequence = Transformer = Transformer e || A S —————Y STy
g Block = Block = L) L
= 5 g |! 200000 A @_/
= S| 7
) =D3 v " «D2 /JI 0 - If . i i %
Il Swiss 0 1 ) 5 7
Plasma o time [s]
Center REF:[ C. Wan, A. Pau, O Sauter et al 2022 (in review)]

A.Pau

Control and Operation of Tokamaks
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=PrL

Ml Swiss
Plasma
Center

Machine Leaming for plasma control

SVD, PCA and MHD
modes detection

ation of Tokamaks  A.Pau

per.

rol and O

21



=PFL Extracting Physics from Sensor Data

= Data fusion techniques
enhance insights from multiple
sSensors.

= Machine learning aids in
identifying significant patterns,
extracting temporal and spatial
correlations.

= Interpret dominant patterns to
extract physics knowledge

= Real-time analysis improves
control strategies.

Ml Swiss
Plasma
Center

Control and Operation of Tokamaks A.Pau
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=PFL  SingularValue Decomposition (SVD)

m X ¢ pnxm,
® Rows (n): each row represents a measurement at a specific time;

® Columns (m): each column corresponds to one sensor placed in a spatial
array (e.g., magnetic probes )

X=UxzV' Ve R

_ Al
U e ].Ejn\” E = H:i’i/irn vy

Il | |

a1
]| e
X: “l“ﬂ“‘“ru‘r‘+l'”uﬂ -.gr vf
i ﬂ
. r4l

Ml Swiss
Plasma
Center

N
w

A.Pau
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=PFL  SingularValue Decomposition (SVD)

X=UZV' V & Rmxm

U e Rrxn 3 c Rpnxm vy

TR e

X — | upug--- U Upgyeellp Oy v,

i N

o U < R"""™: Temporal modes (left singular vectors).
» X < R™™: Diagonal matrix with nonnegative singular values o; in descending order.

o V c [R™*™: Spatial modes (right singular vectors).

Ml Swiss
Plasma
Center

nN
I
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=PrL

Ml Swiss
Plasma
Center

Singular Value Decomposition (SVD)

X-UxV'

X: “qu“‘uruf"'l"'“ﬂ -Lgr

Temporal modes:

left singular vectors (U)
capturing the temporal
evolution of the sensor
signals

U E ]-H:?E\Fl

V E J_Eii‘?‘i'\ﬂil

T

E E J_;i‘-i’ia”?‘?‘!

Vi
-

o
L]

V3

| )

Singular values:
non-negative values ()
arranged in a descending
order, corresponding to the
energy or importance of each
mode

Spatial modes:

rigth singular vectors (V)
revealing patterns and
correlations across the
sensors (e.g., coherent
magnetic fluctuations).

Control and Operation of Tokamaks A.Pau
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=PFL  SingularValue Decomposition (SVD)

X=UZV' V & Rmxm

T

DX 3 c [pnxm Vi
UeR ) < ) T
oy .

TR e

X: “Iuﬂ““uruf-fl"""“ﬂ Lgr v:l'”

i )

O Singular values energy ranking: dominant spatio-temporal modes together with their relative
iImportance allowing for low-rank approximations (useful for noise reduction and dimensionality
reduction).

| |
X =lof |m| [=v=] 4o |w| [—vi—]+ 4o [u| [—v]—]

Ml Swiss | I |
Plasma
Center

Control and Operation of Tokamaks A.Pau



=PrL

Singular Value Decomposition (SVD)

"a,.

XS U=V U e R 3 ¢ P
(o
1Rl IJ
X = |upuz--- U, Upig---Up
1l
@\ MATLAB

>> X = randn(100, 7); % Create a random data matrix
>> [U,S,V] = svd(X); % full SVD
>> [U,S,V] = svd(X, ’econ’);

Ml Swiss
Plasma
Center

V 6 L[; mxm

v3

@ python’

>>> import numpy as np

>>> X = np.random.rand(100, 7) # create random data matrix
>>> U, S, V = np.linalg.svd(X,full_matrices=True) # full SVD
>>> Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False) # economy SVD

N
=~

A.Pau

Control and Operation of Tokamaks
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=L SingularValue Decomposition - correlation matrix

V G I',; mxm

Vi

X — UEV_ U c .Ii"-:.”.” 2 ~ L‘;».”"”

X = |[uWuz---u Usiy---Up " Or A&

| [ R °

- ol v2

O Compute sensor correlation matrix: X' 'X c Rpmem

O Substitutethe SVDof X: X' X=(UXEV') (UZV')
- v vuzv =vxv'
O X'X =V X2V’ eigenvalue decomposition of the correlation matrix

i O Each non-singular singular value is the positive square root of an eigenvalue of the
WISS

Plasma 2

Center correlation matrix @i = v )\'t' (e, )\'e' = 0; ).

A.Pau
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=PFL  Link with Principal Component Analysis (PCA)

® Replacing the matrix X with them mean subtracted matrix (row-

'—I.
Control and Operation of Tokamaks A.Pau

wise subtraction) X—-X->X
Tn
6l 1 _
T, = — X; X = X
4l =1 1
® From the covariance matrix X' X we get directly the principal
~ 21 “directions” by performing an eigen-decomposition of the matrix
* itself:
o1 X'X=VEV
2f " The eigenvectors (columns of V) indicate the directions of
maximum variance, and the eigenvalues represent the variance
-4 . explained by each principal component.
6 5 " The principal component scores are the projections of the data
4 onto the principal directions.
— Scores: XV = UX

Plasma (principal components in the observation space)
29



=P7L  Least square and regression with SVD

U We want to find the slope 'a’ that best fits y = ax

U "Best fit" here means minimizing the sum of
squared errors = minimize |y - xa|f?

U Taking the derivative and setting it to zero gives
us the normal equations: x'xa = X'y

[X] = UZVT

[y] = [X]a=UZV'a

a=VX'UTy

_Z — HXH O Length of x
V=1 Q Unit vector

_U - X/||X|| U Unit vector in the direction X

Ml Swiss
Plasma
Center

regression with SVD

——ground truth
7t ¢© ground truth + noise
regression

[
=]

Control and Operation of Tokamaks A.Pau
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=PFL  MHD perturbations in fusion plasmas TCV

X-UxV'

U e Rxn }» < pnxm

o

TR e

X = |muz-- u, Uy g " Or

i )

Singular values:
U allows decoupling Spatial and Temporal patterns:

O Physical Interpretation

V E ]Eii‘i’i'\ﬁr]
| T

Vi
-

V3

Q singular values - energy and coherency of the MHD perturbation

O dominant spatial mode(s) - dominant patterns across sensors, indicating a large-

scale magnetic perturbation;

W Swiss O dominant temporal mode(s) - time evolution of the perturbation (e.g., oscillations,

Plasma

Center rotations).

w
=

Control and Operation of Tokamaks A.Pau
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=F7L  MHD modes with SVD analysis

Phase shift (coil Coils
position, mode phase
90° - ' periodicity) Rotation °ffset
120° — 60° Amplitude frequency
0.8 : : =
0 Coil measurement:  yx(t) = [Acos(B —Rmvi] +
150° 0.6 30°
04 1.5 *] Probe 0° Probe 90° Probe 180° Probe 270°
0.2 o | ,
o | I |
180° |1 0 Io° 2 o5l | b } | |
Q.
S
0
© i
S
2100 3300 -CF) -0.5 | ‘ ‘ ‘ ‘
-1
240° - 300° 1 1 1 1 x
270° 0 0.2 0.4 0.6 0.8
Time (s)
Il Swiss
Plasma O Matrix measurements: (Y);; = y(z;, t;) < rows=time indices

* columns = sensor positions

(%3
N

Control and Operation of Tokamaks A.Pau



=PrL

Ml Swiss
Plasma
Center

iviagnituae

20

[N
(1]
-

—_
(an)
-

ol

* 1 dominant mode
(perturbation)
f=5; % Sin freq. (Hz)
A=1; % Ampl

20

40 60 80 10
Frequency (Hz)

Q PerformSvD: Y =USV'

Q: How should the
singular values like?

MHD modes with SVD analysis

y(t) = Ay cos(ﬂk —2rvt + 9)

Phase shift (coil Coils
position, mode phase
periodicity) Rotation °ffset

Amplitude frequency

cos——l—

Probe 90° Probe 180°

O Coil measurement: ¥k(t) =|A

bn

151 Probe 0° Probe 270°|

1
(O] i
5 & ' ‘ l' \ /
|
= 05}
o
e
S ooff
® i
>
o 0.5F " “i “ “ |
1
0 0.2 0.4 0.6 0.8
Time (s)
QO Matrix measurements: (Y)i; = y(z;, ;)

[
[

Control and Operation of Tokamaks A.Pau
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=PrL

U Perform SVD:
Y=USV'

Singular Values
35 : ‘

Singular value

1 2 3 4
Mode index

MHD modes with SVD analysis

Dominant Temporal Mode (from SVD

—1° temporal mode
0.06 ——2° temporal mode
0.04 ﬁ
S 0.02 ]
=
aQ
= 0
<
-0.02
-0.04 "

0.2 04 06 038
Time (s)

0 Mode Frequency applying fft to U(:,1)

Ml Swiss
Plasma
Center

U Mode number (periodicity) applying fft to V(:,1)

1

Phase of Spatial Mode (degrees)

200
150
100

50

-50

-100

Dominant Spatial Mode

w
Y

Control and Operation of Tokamaks A.Pau

90°
120° 0.8 60°
.6
150° 30°
180° 0°
polar
240° . 300°
Dominant Mode Phase 270
Complex Spatial Mode
pcl +1i* pc2;
Phase
unwrap
100 200 300

Sensor Angle (degrees)

34



=F7L  MHD modes with SVD analysis

0.8
0.6 N | Vs
sect. 51 sect, 4 /
\ | /
04F | s sect.3
0.2 4] 18 ¢
| 2 19 T
E middle
N 0 1 - — -0 — Y - - - - - =
1|38 21 Ny
-02 5| a7 221 / ""-..\ _
L Bee— — — 234 bottom ~ sect. 15 4
-0.4 ~
-0.6
N
-0.8
0.6 0.8 1 1.2 0.5m

“Rim]

1 Toroidal and poloidal arrangement of
the magnetic probes on TCV

Ml Swiss
Plasma
Center

Freq [kHZ]

N
w
T

O Toroidal mode with “Odd” periodicity

Time (seconds)

[
(2]

A.Pau

Control and Operation of Tokamaks
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=PrL

Ml Swiss
Plasma
Center

SVD relative energy (normalized)

MHD modes with SVD analysis

-
o
o

—
S
N

104 ¢

OO cronos <X2>=0.0563
topos <x?>=0.0603
%%
(o)
OOO
Ooo
(@)
0]
OOo
O

N OO 0D O — N O~

NMTOOMNOOO—ANMITLO N
—

Ll e = il el ol

singular value indices

Freq [kHZ]

N
w
T

O Toroidal mode with “Odd” periodicity

Time (seconds)

[
-]

Control and Operation of Tokamaks A.Pau
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=PrL

Ml Swiss
Plasma
Center

rtSVD.Likelihoods

Mode Amplitude [T]
N

MHD modes with SVD analysis

n=0 n=1 n=2 n=3

w

-_—
T

o

o
o
—~
E
=)
T
LASERS
[ERN

o
fo)

o
~

o
(N

0 0.5 1 1.5 2
Time (seconds)

Freq [kHZ]

N
w
T

O Toroidal mode with “Odd” periodicity

Time (seconds)

w
=~

Control and Operation of Tokamaks A.Pau
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Toroidal

Ml Swiss
Plasma
Center

array:
16 probes

Input
normalization

input layer # hidden layers & # neurons

hyper-parameters

Amplitude

output layer

Algorithm | N1_rms Time (seconds)
Spatial FF'T 4.970490
Our Algorithm 0.000265

[mT]

0.8

o
o

o
~

o
(N

o
o

REF: L. Harrison, J.P. Svantner, A. Pau

N1: True vs Predicted for Shot 74207 (Denormalized)

True N1
Pradicted N1
95% Confidence Interval

n=1xys reconstruction from
raw magnetic

measurements
0.02 0.04 0.06
time[s]

0.08

0.1
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=PFL  Bayesian inference

* Bayes' Theorem that describes how to update the probability of an event (or hypothesis)
based on new evidence or information.
*  What do we mean with Bayesian Inference?

Given a dataset:
D- (x[l],y[l]), (x[z]’y[Z])’ (x[N],y[N])

Likelihood Prior 0 is an unknown

Posterior P(D|0O) - P(@) — " random variable
P(6|D) = (D16) - P(6)

P(D) Evidence or Marginal
* The posterior gives an indication of the uncertainty
P(Dl@) ’ P(H) about our fitting parameter @ given the data D,

- f P(D, 0’) p(e’)dg’ according to the prior knowledge we have.

* Extremely powerful for online learning:

* P(0|Dy.t) x P(D1.410) - P(0]Dq.1—1)

Ml Swiss
Plasma
Center

=
o
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=P7L Behind Kalman filters: Bayesian inference

Process disturbance

u, r, = Az, , + Bu, +@ Ys Stochastic state observer
» _—
Y = Cffﬁ‘@ &, =A%, _, +Bu,+ K, (y, — C(AZ,_, + Bu,))
Measurement noise P
A priori estimate
z, = A%, _, + Bu, 1r
e = Ci‘k
T 08+ prine - - —— Prior PDF
| K % Prior: Mean = 0.00, Var = 1.00 Likelihood PDF
g Likelihood: Mean = 1.00, Var = 0.25
Q B
a 0.6
> Measurements
2041} Predicted state
3 estimate
o
Q0.2
Ml Swiss 0 :
Plasma
Center State

E -
[=Y

A.Pau
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=P7L Behind Kalman filters: Bayesian inference

Process disturbance

u, z, = Az, _, + Bu, +@ Y
, —
W= C‘Tk@ -'i:,, =|A-'Ek_1 + B'U,:l‘l' Kl: (yk - C(A:i'k—'l + Bu’l:)}

Measurement noise

A priori estimate

F
N

Control and Operation of Tokamaks A.Pau

1 %, = A%,_, + By, Tr Optimtal state Brior PDF
9 =C%, ) estimate o~ &~ |—Likelihood PDF
[ Ty 5.0.8 Prior: Mean = 0.00, Var = 1.00 —— Posterior PDF

'*E Likelihood: Mean = 1.00, Var = 0.25
8 0.6 Posterior: Mean = 0.80, Var = 0.20
= Measurements
E 04k Predicted state
© .
o estimate
o
Q0.2

" Blaema 0

Center



=PrL

Behind Kalman filters: Bayesian inference

Process disturbance

z, = Az, _, + Bu
o i

Y

Measurement noise

Ml Swiss
Plasma
Center

w

Probability Density
© o o o =
N EEN D Qo — N

. O

Y

£, =AZ, ,+Buy,+K, (y. —C(A

:i‘h—'l + Buk))

A priori estimate

Prior: Mean = 0.00, Var = 1.00
Likelihood2: Mean = 1.00, Var = 0.25
Likelihood2: Mean = 1.10, Var = 0.25

Predicted state
estimate

F-]
w

A.Pau

Control and Operation of Tokamaks

—— Prior PDF
— Likelihood PDF 1
— Likelihood PDF 2

Measurements 1
Measurements 2
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Behind Kalman filters: Bayesian inference

Process disturbance

z, = Az,_, + Bu
o i

Y
—

Measurement noise

Ml Swiss
Plasma
Center

w

l‘H,
>

Probability Density
o
(o)}

—_—
(V)
1

—
I

o
[o ]
T

(=
~
1

0.2

£, =AZ, ,+Buy,+K, (y. —C(A

A priori estimate

Prior: Mean = 0.00, Var = 1.00
Likelihood2: Mean = 1.00, Var = 0.25
Likelihood2: Mean = 1.10, Var = 0.25
Posterior: Mean = 0.93, Var = 0.11

Predicted state
estimate

z,

_y + Bu,))

Optimtal state =
. H A
estimate

'S
>

A.Pau

Control and Operation of Tokamaks

—— Prior PDF

—— Likelihood PDF 1
—— Likelihood PDF 2
—— Posterior PDF

Measurements 1
Measurements 2
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[ ) -
(o] - N
T T 1

Probability Density
o o
£ [e)]

Behind Kalman filters: Bayesian inference

Optimtal state »
xr

estimate

Prior: Mean = 0.00, Var = 1.00
Likelihood2: Mean = 1.00, Var = 0.25
Likelihood2: Mean = 1.10, Var = 0.25
Posterior: Mean = 0.93, Var = 0.11

Predicted state
estimate

—— Prior PDF
——Likelihood PDF 1
——— Likelihood PDF 2
——— Posterior PDF

Measurements 1
Measurements 2

Ml Swiss
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Tposterior — Tprior T Tlikelihood

Tprior Mprior 1 Tlikelihood Hlikelihood

Hposterior =

Tprior T Tlikelihood

prior distribution: N(,Lbl, L’Tf)
likelihood distribution: N (2, 02)

N (T F HaTo 1

Tl}Tg

T1 { T9

F )
[}

A.Pau
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=PFL  Bayesian inference: event-detection problem

%1073 JET Lockek Mode detector
| |
3 1 : :
o \ detection
5
t 05 \ 7
Q@ Y
[ pl L P
W (T, e o R e e i e
0 Il . —y
40 45 50 55
time [s]
We have a RT-detector for Locked Modes
(LM - common disruption precursor: P('D|9) . P(G)
* The detector works very well: P(G |D) - P(D)
* It has an accuracy of 99% (correct
detection when there actually is a LM)
* It has a very low false positive rate 0.1% e Consider the case where we run a discharge, and the locked mode

detector triggers an alarm.
* What is the probability that there was a locked
mode?

* In our sampling distribution 2% of the
discharges exhibits a Locked Mode

Ml Swiss
Plasma
Center

L]
-]
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&b

[ | [ | ||
Bayesian inference: event-detection problem
%1073 JET Lockek Mode detector
| |
5 1/ - |
ol K detection
5
*g 0.5 \\ -
3 RN e o i
0 1 - o _—y
40 45 50
time [s]
*  We have a RT-detector for Locked Modes 0.99 0.02

(LM - common disruption precursor:

* The detector works very well:

Ml Swiss
Plasma
Center

It has an accuracy of 99% (correct
detection when there actually is a LM)

It has a very low false positive rate 0.1%

In our sampling distribution 2% of the
discharges exhibits a Locked Mode

* What is the probability that there was
actually a locked mode?

P(LM|detect) =

P(detect|LM) - P(LM)

P(detect)

?%

£
~

Control and Operation of Tokamaks A.Pau
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Bayesian inference: event-detection problem

=
€3

g
<
%1073 JET Lockek Mode detector g
| | =
T 1R : - 2
o '\ detection 5
Jg 0.5+ \\ 7 §-
g L. 2
B [T o e e b e e e Sl e e e 5
0 ' - - 5
40 45 50 55 o
time [s]
We have a RT-detector for Locked Modes 0.99 0.02
(LM - common disruption precursor: _ P(detect|LM) - P(LM)
P(LM|detect) =
P(detect)

* The detector works very well:

Ml Swiss

Plasma

Center

* It has an accuracy of 99% (correct
detection when there actually is a LM)

* It has a very low false positive rate 0.1%

* In our sampling distribution 2% of the
discharges exhibits a Locked Mode

* What is the probability that there was
actually a locked mode?

?%

P(detect) = P(detect | LM) - P(LM) + P(detect | ~LM) - P(~LM)

48
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Bayesian inference: event-detection problem

E ]
[

g
<
%1073 JET Lockek Mode detector g
| | £
T 1R : - 2
o '\ detection 5
S "-\ §
gos- N | S
@ R TP g
B [T o e e b e e e Sl e e e 5
0 : - - J5
40 45 50 55 ©
time [s]
We have a RT-detector for Locked Modes 0.99 0.02
(LM - common disruption precursor: _ P(detect|LM) - P(LM)
P(LM|detect) = P(detech)
etec
* The detector works very well: 2%
* It has an accuracy of 99% (correct
0.99 0.02 0.001 1-0.02

Ml Swiss

Plasma

Center

detection when there actually is a LM)
* It has a very low false positive rate 0.1%

* In our sampling distribution 2% of the
discharges exhibits a Locked Mode

* What is the probability that there was
actually a locked mode? 95%

P(detect) = P(detect | LM) - P(LM) + P(detect | ~LM) - P(~LM)

0.99 0.02
P(detect|LM) - P(LM)

P(detect) -
0.0208

~0.953

P(LM|detect) =

49
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Control oriented Machine Leaming applications

Plasma trajectories &
Latent variable models

ation of Tokamaks  A.Pau

per.

trol and O

50



cPiL

* DISRUPTION PREVENTION

Break down in different
“control phases”:

M Swiss
Plasma
Center

REF. SCENARIO

keep the target
scenario stable
again disturbances
(ST, ELM, MHD
modes, etc.)

p SCENARIO

PROXIMITY CONTROL
= keep stability while

stability & controllability

Latent variable models for plasma state monitoring

A DISRUPTION PREVENTION DISRUPTION

i |
PROXIMITY CONTROL | “AcTIve”
»| AVOIDANCE |
l————#

REFERENCE !

MITIGATION

- s Wi

Flattop phase

T 1

OPERATIONAL LIMIT i s s s i

w5

REF. TARGET

Time (s)

|
ACTIVE AVOIDANCE : EMERGENCY SHUTDOWN

= Fast controlled
shutdown

|
|
:- asynchronous :
pushing performance by | response when |
. . . I . . I
regulating proximity to | crossmg.operatlonal | = mitigation
| boundaries (danger |
| |

boundaries levels)

Control and Operation of Tokamaks A.Pau
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H-mode
degradation

L-H back
transition

MARFE onset

Edge

Cooling

DISRUPTION

M Swiss
Plasma
Center

Plasma trajectories In physics phase spaces

- TCV #74498 = High-performance Density Limit
" " dynamics described through
=9 trajectories in a physics-based
2| L= i “state space” [H98yY,2-n__it-norm]
d = 0.15 e REF: [M. Bernert PPCF 2015]
1 } ’ - 16 _ . = Conflicting control objectives in
i . d=0 = high density regimes
0.8} “ BT 1.4
3 7
High [
0.6 4 1.2
danger
oat | |  level W
0.8 1 12 1.4

R = Proximity to boundaries with

e increasing probability of
disruptions (H-L, MARFE, etc.)

Control and Operation of Tokamaks A.Pau
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‘C-Pricu'

A

25
—‘ Zt"VN(#:sf"t) | 2

Latent variable models for plasma state monitoring

time2boundary regression

P 4>|t"3‘,el }—' Lsmare

\disruptivity classification

P
e e T
= T
| St _nil }—Ee—l m i —
g 2 T
| St-ni2 }—Ee-z @ %—J B 0
: ) g
: = g
= 32
: : @ Oy
/
| 81 et in—@O—> — |

K

REF: A. Buerli, A. Pau et al, ArXiV 2025

trajectory movement

b

Ltor

Smooth latent

Py )_"pnd.iar — Lpcr

/

/ Input state
- reconstruction
5] » & »  Luse

= Sequence-based model: a variational autoencoder (transformer, GPT-alike

architecture)

= Multi-task learning: by learning tasks jointly(supervised and unsupervised),

M Swiss the model can discover common features or structures across tasks (shared
Rasma representation).

Control and Operation of Tokamaks A.Pau
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cPiL

Flat-top start

Disruption EdgeCooling
Disruption ImpAcc

Ramp down start

Ramp down (IPLA < 1MA)
Disruption Undefined \

REF: A. Buerli, A. Pau et al, ArXiV 2025

95% Confidence Inverval

ML

HL
RadCollapse
IMP_acc
Flat-top start
Disruption

Plasma State Monitoring with sequence-based DL

o
@

Aandnisip

»

0.2

0o

55

53

51

A.Pau

Control and Operation of Tokamaks

[s] swn

M Swiss Xy Xy
gg"ﬁ{g? *The goal is to discover and learn the hidden/latent variables or states that better explain or predict observable

signals, transitions, or anomalies in plasma behavior.



cPiL

REF: A. Buerli, A. Pau et al, ArXiV 2025

Flat-top start

Disruption EdgeCooling
Disruption ImpAcc

Ramp down start

Ramp down (IPLA < 1MA)
Disruption Undefined

\

M Swiss X1
Plasma
Center

X1

Plasma State Monitoring with sequence-based DL

0.4

S
@

Aiandnisip

e

0.2

0e

*The goal is to discover and learn the hidden/latent variables or states that better explain or predict observable
signals, transitions, or anomalies in plasma behavior.

55

53

51

A.Pau
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Sequential VAE with multimodal prior

Ml Swiss
Plasma
Center

Latent variable models for disruption monitoring

Project disruptive boundaries &
physics quantities to inspect
connections

Project full discharges to track proximity

to disruption

Future: Investigate identified modes in

posterior distribution

Future: Discretize projections as
sequences of states

FIRcore projection

lel9

©

o
FIRcore (M™2)

N

Kedge Projection

620 TCV #58276 TCv #57388

i

[Poels et al. WIP]

SN _——_——

0.1 disruptivity 0.8 0.1 disruptivity 0.8 0.1 disruptivity 0.8
TCV TCV #67343
lel10 Movement speed in latent space
TCV #67343 projection 6 J— Lo
= - —— dzydt 0.8
1
0.8 4 o6
2
S 0.4
06 = 2N y fo.2
2 ,
.E -—"'.v S o s LN S RIS -u\.ln\t\l’aﬂ"‘n 0.0
Z - = - -
0.4 5 disruptivity & distance to latent prior modes o5
2 — Wer ()
© 7500 —— disruptivity score - 0.4
0.2 s = L 0.3
' ~ 5000 '
~ = F0.2
So 2500
N 0.1
0
0.25 0.50 0.75 190 1.25 = i ! ! Y ' ! 0.0
time (s) Y‘k\ S~_ o2 P4 0.6 95 1.0 1.2
Sl Sa-7 _tiarte (s)

A.Pau

Control and Operation of Tokamaks

56



—pr=| Plasma trajectories optimization with physics constraints

COLLABORATION WITH MIT

= Scientific machine learning for building simulators that combine physics + machine learning

= Reinforcement learning to design trajectories and controllers to meet operator specifications that
are robust to physics uncertainty

Trajectory Generation Validation Deployment to
via Policy Rollout Process Tokamak Ops
Devi A. Wang, A. Pau, et al.
evice Trained ;
Operator (paper to be submitted)

Settings

| Trajectories

T“"T“‘" i Simulator 1
Policy -

.

.
e nec x Simulator N
Policy

i
; .
. .
: .
. .
; .
| ;
. :
. |
| |
. :
. :
1 1
. - |

[ ) Constraint | Library of |
.

: .
.

. :
| .
. :
: .
. |
| |
. .
| :
: .
. .
| |
. .

Data to Improve
Differentiable Simulations

= Trajectory: sequence of states, actions, and rewards that an agent experiences as it
interacts with the environment.

M Swiss = Neural State Space Models (NSSM) to learn the temporal dynamics of some observed
gfﬁ{g? quantities in response to actions (physics structure and data-driven models).

A.Pau

Control and Operation of Tokamaks
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CP=L Plasma trajectories optimization with physics constraints

Predictions and Constraints
Wiot

A.Pau

COLLABORATION WITH MIT

s Training Environment
— 82877
— 52878
= Hit Goal
Soft Limit

Reward function _ ==
Actions S0

3
£
©
[e]
T(X(f),a(f)) = —Crimer — f‘W“f;ar(f)V—— C[PIP(I)‘ . Harg Lt E
Penalty for time  pengity for current and energy g
Asoft Rhard %
©
4 Y copsi(x(1)) = Y Crarahi(x(2)) 3
i=1 i=1 S
. - ) ~ ~ / o o

Sofit chance-constraints ~ Hard chance-constraints = :Z

009. 0 135 1.40 1.45 1.50 1.55 1.60 1.65
Reward function parameters - Aminor

Category Parameter Value

Hard Limits /&% 1.0
los 0.5
fow 0.8
. By 1.75
Soft Limits
Yoer 0.75
195 0.313
Ctime 5.0
a1, 1.0
R— Parameters ¢y 1.0
WISS 3
Csoft 1.0x10 Time (&)
Plasma Chard 5.0x10* '

Center
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Exercises

Introduction to the
exercises
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£PFL Control augmentation in modem Plasma Control Systems

A.Pau

REF: [F. Matos et al. NF 2020]
REF: [F. Matos et al. NF 2021]

u Magnetic COI’]tFOl via DRL REF: [G. Marceca et al. NeurlPS 2021]

REF: [FJ. Degrave, F. Felici et al. Nature 2022] .
= plasma state monitoring and AT P o
forecasting for control EVENT DETECTION
augmentation

Deep learning models

* lLongterm
dependencies in
confinement state
temporal dynamics

Control and Operation of Tokamaks

= Detection of off-normal events to
react with specific control tasks in
real-time

= Proximity to operational limits
REF: [Pau et al IEEE-TPS 2018
REF: [Pau et al NF 2019]

Tokamak

sibiustiien Diasnosics ...combination & integration of:
——

= Physics-, model- & ML-based

[ Plasma Control System ]47 approaches

Ml Swiss
Plasma
Center
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=PFL Event detection and plasma state classification

" Plasma confinement states [ =Low; D=Dithering; H=High] ® Plasma can evolve in one of several

possible confinement states (typical
categorization in | =Low; D=Dithering;
H=High).

o e e : = By applying sufficient heating power, the

T - plasma spontaneously transitions from a

f low to a high confinement state

" H-mode: improved energy confinement
state with reduced particles and energy

transport outwards formation of an edge
transport barrier (ETB) and a cyclic MHD

SXR core (au)

w)
I

D emission

i —1

alpha

¢ MINROR SIGNAL (su) instability called Edge Locallzed Modes
(ELMs).
Plasma thermal energy
04 H-mode
0.2 "'---._\ profile
o L : ™ Tragsport ]
i L-mode arrier
LHD phases from validated-labeled file Time [s] R N ]
A total of 138 ELMs were found in the loaded data k
A total of 249 ST_MDs were found in the loaded dat ]
[}
= sui An experiments have potentially hundreds of events.... Pedestal S
L 1 1 e 1
Pglssria 0 0.2 0.4 0.6 0.8 1

Center r/a

(3
=

A.Pau
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Backup slides
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ML foundations: a probabilistic perspective

We call inference(® the procedure with which we quantify of the uncertainty or

—~

confidence in the estimate 8. 0 = argmin £ (D|0)
6

On a probabilistic perspective we reason in terms of Probability Density Estimation
for the joint probability distribution of our dataset D (a sample from the population)

Under i.i.d assumption (training examples sampled independently and identically
from the population representing the input domain D:

N N
p(D|0) = np(yn|xn, 9) LL(D[6) £ logp(D|6) = Z P nl|xn, )
n=1 =

n=1

Therefore the optimization problem can be seen as maximizing a probability

0 = argmaxp (D|0)
]

inference® in the deep learning community refers to predicting p (V| %, B)

(-3
w

A.Pau

Control and Operation of Tokamaks
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ML foundations: a probabilistic perspective

Therefore, the optimization problem translates in maximizing the Log-Likelihood (LL),

—

N
LL(D|@) £ logp(D|O) = z P (Y |xn, 0) 0 = argmax LL (D|0)
0
n=1

Which can be also seen as minimizing the Negative Log-Likelihood (NNL):

N
NLL(D|@) £ —logp(D|0) = — Z (V| xn, 0) 0 = argmin NLL(D|0)
0

n=1

Estimating the probability density function (high uncertainty if the sampling distribution
Is small) is usually done with two common approaches:

« Maximum Likelihood Estimation (MLE)
« Maximum a Posteriori (MAP):

-3
FY

A.Pau

Control and Operation of Tokamaks
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=PFL ML foundations: a probabilistic perspective

« Maximum Likelihood Estimation (MLE): frequentist approach for estimating the
set of parameters 8 of a model by finding the values that maximize the log-
likelihood LL(D|0).

» Interpretation: LL(D|0) describes the probability of observing the data given the
model parameters 8. The likelihood function is known if data are i.i.d.
0 resulting from MLE are the most probable values given the data.

« Maximum a Posteriori (MAP): Bayesian approach for estimating the values of the
parameters 0 that maximize the posterior probability,

* Interpretation: MAP describes probability of the parameters given the data and
allows incorporating prior knowledge about the parameters into the estimation
process. This prior knowledge is specified as a probability distribution and allows us
to account for uncertainty in the data.

Ml Swiss
Plasma
Center

Control and Operation of Tokamaks A.Pau ©



=PFL  Event detection and plasma confinement state classification

A.Pau

" Deep Learning model based on a s | FEFEEFREERRERERER |7 R R
convolutional-RNN (LSTM) g N

" Probability of the plasma of being in
a given confinement state
(accounting for temporal evolution)

Convinputl | [ Convinput2 | [ Convinputil | Conv Input n

Dropout

Feature
Extraction n

Convolutions +
Max Pooling +

Feature Feature Feature
Extraction 1 Extraction 2

" RT implementation (nice example of
integration with physics-based
models in the framework of off-

Extraction 11

Control and Operation of Tokamaks

e dpaption Mok - A
normal events handling & disruption 3 i)
avoidance

R B B B A N T s R e R =33
S| &5 & K EH B 5L g ==
GNNNNNNNNNN$$$N¢$$ ﬁtﬁtﬁt&ﬁt
1.0 REF: [Matos et al NF 2020]
=Y — pD W
g —— FIR
go.s —
0w0.67 — P
=] Low
c0.4 Dither
High
£0.2 P
Il Swiss n b
Plasma 0.0 I - I I I I I | | ‘
Center 0.0 01 0.2 03 0.4 05 0.6 0.7 0.8

't(s)
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Event detection and plasma confinement state classification

= SEQUENCE 2 SEQUENCE MODEL:

Encoder

A.Pau | ETH Al4S series | Zurich, 26 Apr 2022

Decoder

M Swiss
Plasma
Center

* Model not constrained to have same
source/target resolutions.

* Decoder was extended with an attention layer to
capture larger context of long input sequences.

27 windows, 300 source steps
{ I \

\ \ ( R
| AN N ‘
Subseq. 1. | Subseq.2 J _ Subseq. n J
H —_— H T
| o ]
{ Owerlop=60 i |
i . I,
Convnet Convnet
LsT™ : st™m
T '{ T
...... decencas .
Cwdy, ety
1 ) 127
' M ' H
| ' ' H
...... Y R S
4 } ¢ ) '
H '
Attention i! Attention '
b :

Towlen[ea] o] [ ] e

REF: [Matos et al NF 2021]

10000

UTIME MODEL:

* Multi-scale convolutional structure allows to capture
patterns at different scales present in the plasma.

* processing the whole signal at once (offline) with the
ability to see at a wider contextual information.

1666
|

3 Conv 5x1 + BN
MaxPool 6x1 + DP
* MaxPool 4x1 + DP
MaxPool 2x1 + DP
Up-Conv 2x1 + BN
* Up-Conv 4x1 + BN
Up-Conv 6x1 + BN
—> Crop and copy + DP
Conv 5x1
=»  ZeroPad+AvgPool+Conv

1x1

32 16 16 3

9984

64 32 *
I3y

A

REF: [Marceca et al NEURIPS 2021]
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